Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(1): 337-350, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38194362

RESUMO

The knotted configuration of lasso peptides confers thermal stability and proteolytic resistance, addressing two shortcomings of peptide-based drugs. However, low isolation yields hinder the discovery and development of lasso peptides. While testing Burkholderia sp. FERM BP-3421 as a bacterial host to produce the lasso peptide capistruin, an overproducer clone was previously identified. In this study, we show that an increase in the plasmid copy number partially contributed to the overproducer phenotype. Further, we modulated the plasmid copy number to recapitulate titers to an average of 160% relative to the overproducer, which is 1000-fold higher than previously reported with E. coli, reaching up to 240 mg/L. To probe the applicability of the developed tools for lasso peptide discovery, we targeted a new lasso peptide biosynthetic gene cluster from endosymbiont Mycetohabitans sp. B13, leading to the isolation of mycetolassin-15 and mycetolassin-18 in combined titers of 11 mg/L. These results validate Burkholderia sp. FERM BP-3421 as a production platform for lasso peptide discovery.


Assuntos
Burkholderia , Burkholderia/genética , Escherichia coli/genética , Variações do Número de Cópias de DNA , Peptídeos/genética , Plasmídeos/genética
2.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38052428

RESUMO

Natural products have found important applications in the pharmaceutical and agricultural sectors. In bacteria, the genes that encode the biosynthesis of natural products are often colocalized in the genome, forming biosynthetic gene clusters. It has been predicted that only 3% of natural products encoded in bacterial genomes have been discovered thus far, in part because gene clusters may be poorly expressed under laboratory conditions. Heterologous expression can help convert bioinformatics predictions into products. However, challenges remain, such as gene cluster prioritization, cloning of the complete gene cluster, high level expression, product identification, and isolation of products in practical yields. Here we reviewed the literature from the past 5 years (January 2018 to June 2023) to identify studies that discovered natural products by heterologous expression. From the 50 studies identified, we present analyses of the rationale for gene cluster prioritization, cloning methods, biosynthetic class, source taxa, and host choice. Combined, the 50 studies led to the discovery of 63 new families of natural products, supporting heterologous expression as a promising way to access novel chemistry. However, the success rate of natural product detection varied from 11% to 32% based on four large-scale studies that were part of the reviewed literature. The low success rate makes it apparent that much remains to be improved. The potential reasons for failure and points to be considered to improve the chances of success are discussed. ONE-SENTENCE SUMMARY: At least 63 new families of bacterial natural products were discovered using heterologous expression in the last 5 years, supporting heterologous expression as a promising way to access novel chemistry; however, the success rate is low (11-32%) making it apparent that much remains to be improved-we discuss the potential reasons for failure and points to be considered to improve the chances of success. BioRender was used to generate the graphical abstract figure.


Assuntos
Produtos Biológicos , Produtos Biológicos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Genoma Bacteriano , Biologia Computacional , Família Multigênica
3.
Proc Natl Acad Sci U S A ; 120(42): e2304668120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812712

RESUMO

Bacterial natural products have found many important industrial applications. Yet traditional discovery pipelines often prioritize individual natural product families despite the presence of multiple natural product biosynthetic gene clusters in each bacterial genome. Systematic characterization of talented strains is a means to expand the known natural product space. Here, we report genomics, epigenomics, and metabolomics studies of Burkholderia sp. FERM BP-3421, a soil isolate and known producer of antitumor spliceostatins. Its genome is composed of two chromosomes and two plasmids encoding at least 29 natural product families. Metabolomics studies showed that FERM BP-3421 also produces antifungal aminopyrrolnitrin and approved anticancer romidepsin. From the orphan metabolome features, we connected a lipopeptide of 1,928 Da to an 18-module nonribosomal peptide synthetase encoded as a single gene in chromosome 1. Isolation and structure elucidation led to the identification of selethramide which contains a repeating pattern of serine and leucine and is cyclized at the side chain oxygen of the one threonine residue at position 13. A (R)-3-hydroxybutyric acid moiety decorates the N-terminal serine. Initial attempts to obtain deletion mutants to probe the role of selethramide failed. After acquiring epigenome (methylome) data for FERM BP-3421, we employed a mimicry by methylation strategy that improved DNA transfer efficiency. Mutants defective in selethramide biosynthesis showed reduced surfactant activity and impaired swarming motility that could be chemically complemented with selethramide. This work unveils a lipopeptide that promotes surface motility, establishes improved DNA transfer efficiency, and sets the stage for continued natural product identification from a prolific strain.


Assuntos
Produtos Biológicos , Burkholderia , Humanos , Burkholderia/genética , Peptídeo Sintases/genética , Lipopeptídeos/química , DNA , Produtos Biológicos/química , Serina/genética , Família Multigênica
4.
ACS Synth Biol ; 12(7): 1952-1960, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37338297

RESUMO

Burkholderia ß-Proteobacteria are emerging sources of natural products. We are interested in developing Burkholderia sp. FERM BP-3421 into a synthetic biology chassis to facilitate natural product discovery. FERM BP-3421 produces autologous spliceostatins on gram per liter scale. We reasoned that transcription factors and promoters that regulate spliceostatin biosynthesis would provide valuable parts for heterologous expression. Herein we demonstrate that fr9A encodes a pathway-specific transcriptional activator of spliceostatin biosynthesis. In-frame deletion of fr9A abolished spliceostatin production, which was restored by genetic complementation. Using transcriptomics and green fluorescent protein (GFP) reporter assays, we identified four fr9 promoters, three of which are activated by LuxR-type regulator Fr9A. We then constructed an Fr9A-regulated promoter system that was compared to benchmarks and effectively applied for GFP and capistruin lasso peptide expression in an optimized host background. Our findings enrich the genetic toolbox for optimizing heterologous expression and promoting the discovery and development of natural products from Burkholderia bacteria.


Assuntos
Burkholderia , Burkholderia/genética , Burkholderia/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas/genética , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Microbiol Resour Announc ; 12(5): e0011123, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37074205

RESUMO

Here, we report the complete genome sequence of Burkholderia sp. strain FERM BP-3421, a bacterium isolated previously from a soil sample in Japan. Strain FERM BP-3421 produces spliceostatins, which are splicing modulatory antitumor agents that advanced to preclinical development. The genome is composed of four circular replicons of 3.90, 3.0, 0.59, and 0.24 Mbp.

6.
Curr Opin Biotechnol ; 77: 102782, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36049254

RESUMO

Bacterial natural products (NPs) retain high value in discovery efforts for applications in medicine and agriculture. Burkholderia ß-Proteobacteria are a promising source of NPs. In this review, we summarize the recently developed genetic manipulation techniques used to access silent/cryptic biosynthetic gene clusters from Burkholderia native producers. We also discuss the development of Burkholderia bacteria as heterologous hosts and the application of Burkholderia in industrial-scale production of NPs. Genetic engineering and fermentation media optimization have enabled the industrial-scale production of at least two Burkholderia NPs. The biotechnology approaches discussed here will continue to facilitate the discovery and development of NPs from Burkholderia.


Assuntos
Produtos Biológicos , Burkholderia , Vias Biossintéticas/genética , Biotecnologia , Burkholderia/genética , Família Multigênica
7.
Appl Microbiol Biotechnol ; 106(8): 3293-3306, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35435454

RESUMO

Culture-independent metagenomic approaches offer a promising solution to the discovery of therapeutically relevant compounds such as antibiotics by enabling access to the hidden biosynthetic potential of microorganisms. These strategies, however, often entail laborious, multi-step, and time-consuming procedures to recover the biosynthetic gene clusters (BGCs) from soil metagenomes for subsequent heterologous expression. Here, we developed an efficient method we called single Nanopore read cluster mining (SNRCM), which enables the fast recovery of complete BGCs from a soil metagenome using long- and short-read sequencing. A metagenomic fosmid library of 83,700 clones was generated and sequenced using Nanopore as well as Illumina technologies. Hybrid assembled contigs of the sequenced fosmid library were subsequently analyzed to identify BGCs encoding secondary metabolites. Using SNRCM, we aligned the identified BGCs directly to Nanopore long-reads and were able to detect complete BGCs on single fosmids. This enabled us to select for and recover BGCs of interest for subsequent heterologous expression attempts. Additionally, the sequencing data of the fosmid library and its corresponding metagenomic DNA enabled us to assemble and recover a large nonribosomal peptide synthetase (NRPS) BGC from three different fosmids of our library and to directly amplify and recover a complete lasso peptide BGC from the high-quality metagenomic DNA. Overall, the strategies presented here provide a useful tool for accelerating and facilitating the identification and production of potentially interesting bioactive compounds from soil metagenomes. KEY POINTS: • An efficient approach for the recovery of BGCs from soil metagenomes was developed to facilitate natural product discovery. • A fosmid library was constructed from soil metagenomic HMW DNA and sequenced via Illumina and Nanopore. • Nanopore long-reads enabled the direct identification and recovery of complete BGCs on single fosmids.


Assuntos
Metagenoma , Solo , DNA , Metagenômica/métodos , Família Multigênica
8.
J Nat Prod ; 85(3): 702-719, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35213158

RESUMO

Research progress from mainly over the last five years is described for a multidisciplinary collaborative program project directed toward the discovery of potential anticancer agents from a broad range of taxonomically defined organisms. Selected lead compounds with potential as new antitumor agents that are representative of considerable structural diversity have continued to be obtained from each of tropical plants, terrestrial and aquatic cyanobacteria, and filamentous fungi. Recently, a new focus has been on the investigation of the constituents of U.S. lichens and their fungal mycobionts. A medicinal chemistry and pharmacokinetics component of the project has optimized structurally selected lead natural products, leading to enhanced cytotoxic potencies against selected cancer cell lines. Biological testing has shown several compounds to have in vivo activity, and relevant preliminary structure-activity relationship and mechanism of action studies have been performed. Several promising lead compounds worthy of further investigation have been identified from the most recent collaborative work performed.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias , Antineoplásicos/química , Produtos Biológicos/química , Humanos , Neoplasias/tratamento farmacológico , Plantas/química , Relação Estrutura-Atividade
9.
Angew Chem Int Ed Engl ; 60(29): 15891-15898, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33961724

RESUMO

Although swarming motility and biofilms are opposed collective behaviors, both contribute to bacterial survival and host colonization. Pseudovibrio bacteria have attracted attention because they are part of the microbiome of healthy marine sponges. Two-thirds of Pseudovibrio genomes contain a member of a nonribosomal peptide synthetase-polyketide synthase gene cluster family, which is also found sporadically in Pseudomonas pathogens of insects and plants. After developing reverse genetics for Pseudovibrio, we isolated heptapeptides with an ureido linkage and related nonadepsipeptides we termed pseudovibriamides A and B, respectively. A combination of genetics and imaging mass spectrometry experiments showed heptapetides were excreted, promoting motility and reducing biofilm formation. In contrast to lipopeptides widely known to affect motility/biofilms, pseudovibriamides are not surfactants. Our results expand current knowledge on metabolites mediating bacterial collective behavior.


Assuntos
Peptídeos/metabolismo , Poríferos/genética , Poríferos/metabolismo , Animais , Família Multigênica/genética , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Simbiose
10.
Curr Opin Chem Biol ; 58: 137-145, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33130520

RESUMO

Natural products continue to provide privileged scaffolds for drug discovery. However, challenges in supply and structure diversification can limit development. Here, we discuss recent (2017-2020) examples of synthetic biology approaches used to address challenges in supply and contribute to structure diversification of selected plant and bacterial natural products. Our examples include plant terpenoids, alkaloids, and lignans and bacterial polyketides, nonribosomal peptides, and ribosomally synthesized and posttranslationally modified peptides.


Assuntos
Produtos Biológicos/metabolismo , Descoberta de Drogas , Engenharia , Biologia Sintética/métodos
11.
Chembiochem ; 21(24): 3495-3499, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-32776704

RESUMO

Homochirality is a signature of biological systems. The essential and ubiquitous cofactor S-adenosyl-l-methionine (SAM) is synthesized in cells from adenosine triphosphate and l-methionine to yield exclusively the (S,S)-SAM diastereomer. (S,S)-SAM plays a crucial role as the primary methyl donor in transmethylation reactions important to the development and homeostasis of all organisms from bacteria to humans. However, (S,S)-SAM slowly racemizes at the sulfonium center to yield the inactive (R,S)-SAM, which can inhibit methyltransferases. Control of SAM homochirality has been shown to involve homocysteine S-methyltransferases in plants, insects, worms, yeast, and in ∼18 % of bacteria. Herein, we show that a recombinant protein containing a domain of unknown function (DUF62) from the actinomycete bacterium Salinispora tropica functions as a stereoselective (R,S)-SAM hydrolase (adenosine-forming). DUF62 proteins are encoded in the genomes of 21 % of bacteria and 42 % of archaea and potentially represent a novel mechanism to remediate SAM damage.


Assuntos
Hidrolases/metabolismo , S-Adenosilmetionina/metabolismo , Hidrolases/química , Micromonosporaceae/enzimologia , Estrutura Molecular , S-Adenosilmetionina/química , Estereoisomerismo
12.
ACS Synth Biol ; 9(2): 241-248, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31913601

RESUMO

Burkholderia bacteria are an emerging source of natural products with applications in agriculture and medicine. The heterologous expression of biosynthetic gene clusters can streamline natural product discovery; however, production yields with the commonly used Escherichia coli host are usually low. Following the current paradigm that one host does not fit all, we aim to develop a Burkholderia host to ultimately tap into the biosynthetic potential of Burkholderia genomes, which can contain up to 27 biosynthetic gene clusters per genome. Because a close phylogenetic relationship is expected to improve the odds of success due to compatible gene expression and precursor supply, we tested Burkholderia sp. FERM BP-3421, a nonpathogenic isolate previously used to produce natural products at industrial scales. We show here that FERM BP-3421 can produce the model lasso peptide capistruin in yields that are at least 65 times and up to 580 times higher than the previously used E. coli host.


Assuntos
Burkholderia/metabolismo , Peptídeos/metabolismo , Produtos Biológicos/metabolismo , Cromatografia Líquida de Alta Pressão , Família Multigênica , Peptídeos/análise , Peptídeos/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação
13.
Chembiochem ; 21(6): 845-852, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31769581

RESUMO

Cyanobactins are a large family of cyanobacterial ribosomally synthesized and post-translationally modified peptides (RiPPs) often associated with biological activities, such as cytotoxicity, antiviral, and antimalarial activities. They are traditionally described as cyclic molecules containing heterocyclized amino acids. However, this definition has been recently challenged by the discovery of short, linear cyanobactins containing three to five amino acids as well as cyanobactins containing no heterocyclized residues. Herein we report the discovery of scytodecamide (1) from the freshwater cyanobacterium Scytonema sp. UIC 10036. Structural elucidation based on mass spectrometry, 1D and 2D NMR spectroscopy, and Marfey's method revealed 1 to be a linear decapeptide with an N-terminal N-methylation and a C-terminal amidation. The genome of Scytonema sp. UIC 10036 was sequenced, and bioinformatic analysis revealed a cyanobactin-like biosynthetic gene cluster consistent with the structure of 1. The discovery of 1 as a novel linear peptide containing an N-terminal N-methylation and a C-terminal amidation expands the chemical and genetic diversity of the cyanobactin family of compounds.


Assuntos
Amidas/isolamento & purificação , Cianobactérias/química , Amidas/química , Conformação Molecular , Família Multigênica , Peptídeos Cíclicos/química , Peptídeos Cíclicos/genética
14.
J Nat Prod ; 82(7): 2018-2037, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31294966

RESUMO

Burkholderia bacteria are multifaceted organisms that are ecologically and metabolically diverse. The Burkholderia genus has gained prominence because it includes human pathogens; however, many strains are nonpathogenic and have desirable characteristics such as beneficial plant associations and degradation of pollutants. The diversity of the Burkholderia genus is reflected within the large genomes that feature multiple replicons. Burkholderia genomes encode a plethora of natural products with potential therapeutic relevance and biotechnological applications. This review highlights Burkholderia as an emerging source of natural products. An overview of the taxonomy of the Burkholderia genus, which is currently being revised, is provided. We then present a curated compilation of natural products isolated from Burkholderia sensu lato and analyze their characteristics in terms of biosynthetic class, discovery method, and bioactivity. Finally, we describe and discuss genome characteristics and highlight the biosynthesis of a select number of natural products that are encoded in unusual biosynthetic gene clusters. The availability of >1000 Burkholderia genomes in public databases provides an opportunity to realize the genetic potential of this underexplored taxon for natural product discovery.


Assuntos
Produtos Biológicos/metabolismo , Burkholderia/metabolismo , Burkholderia/genética , Genes Bacterianos
15.
J Ind Microbiol Biotechnol ; 46(9-10): 1359-1364, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31093809

RESUMO

Members of the diazaquinomycin class of natural products have shown potent and selective activity against Mycobacterium tuberculosis. However, poor aqueous solubility has prevented extensive studies in animal models thus far. Our long-term goal is to harness knowledge regarding diazaquinomycin biosynthesis towards the generation of derivatives for structure-activity relationship studies. We have previously sequenced the genomes of two diazaquinomycin-producing, actinomycete bacteria and identified putative daq biosynthetic gene clusters. Here, we report the heterologous expression of the daq gene cluster from the marine Streptomyces sp. F001 in S. coelicolor M1152. In addition to serving as functional proof for gene cluster assignment, the heterologous expression system reported here is expected to facilitate investigations aimed at elucidating diazaquinomycin biosynthesis.


Assuntos
Família Multigênica , Streptomyces/metabolismo , Produtos Biológicos/metabolismo , Regulação Bacteriana da Expressão Gênica , Streptomyces/genética
16.
mSystems ; 4(3)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31120026

RESUMO

The biosynthetic talent of microorganisms has been harnessed for drug discovery for almost a century. Microbial metabolites not only account for the majority of antibiotics available today, but have also led to anticancer, immunosuppressant, and cholesterol-lowering drugs. Yet, inherent challenges of natural products-including inadequate supply and difficulties with structure diversification-contributed to their deprioritization as a source of pharmaceuticals. In recent years, advances in genome sequencing and synthetic biology spurred a renewed interest in natural products. Bacterial genomes encode an abundance of natural products awaiting discovery. Synthetic biology can facilitate not only discovery and improvements in supply, but also structure diversification. This perspective highlights prior accomplishments in the field of synthetic biology and natural products by the scientific community at large, including research from our laboratory. We also provide our opinion as to where we need to go to continue advancing the field.

17.
Microbiol Resour Announc ; 8(19)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31072893

RESUMO

We report the 9.7-Mb genome sequence of Streptomyces sp. strain F001, isolated from a marine sediment sample from Raja Ampat, Indonesia. F001 produces diazaquinomycins, which exhibit potent and selective antituberculosis activity. In addition, it is also known to produce akashin A, a blue pigment that has shown cytotoxic activity.

18.
J Nat Prod ; 82(4): 937-946, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30896942

RESUMO

Tuberculosis is an infectious disease of global concern. Members of the diazaquinomycin (DAQ) class of natural products have shown potent and selective activity against drug-resistant Mycobacterium tuberculosis. However, poor solubility has prevented further development of this compound class. Understanding DAQ biosynthesis may provide a viable route for the generation of derivatives with improved properties. We have sequenced the genomes of two actinomycete bacteria that produce distinct DAQ derivatives. While software tools for automated biosynthetic gene cluster (BGC) prediction failed to detect DAQ BGCs, comparative genomics using MAUVE alignment led to the identification of putative BGCs in the marine Streptomyces sp. F001 and in the freshwater Micromonospora sp. B006. Deletion of the identified daq BGC in strain B006 using CRISPR-Cas9 genome editing abolished DAQ production, providing experimental evidence for BGC assignment. A complete model for DAQ biosynthesis is proposed based on the genes identified. Insufficient knowledge of natural product biosynthesis is one of the major challenges of productive genome mining approaches. The results reported here fill a gap in knowledge regarding the genetic basis for the biosynthesis of DAQ antibiotics. Moreover, identification of the daq BGC shall enable future generations of improved derivatives using biosynthetic methods.


Assuntos
Actinobacteria/genética , Equinomicina/análogos & derivados , Água Doce/microbiologia , Genes Bacterianos , Família Multigênica , Água do Mar/microbiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Equinomicina/biossíntese , Equinomicina/química , Deleção de Genes
19.
Medchemcomm ; 10(8): 1256-1272, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32180918

RESUMO

Polyketide natural products possess diverse biological activities including antibiotic, anticancer, and immunosuppressive. Their equally varied and complex structures arise from head-to-tail condensation of simple carboxyacyl monomers. Since the seminal discovery that biosynthesis of polyketides such as the macrolide erythromycin is catalyzed by uncharacteristically large, multifunctional enzymes, termed modular type I polyketide synthases, chemists and biologists alike have been inspired to harness the apparent modularity of the synthases to further diversify polyketide structures. Yet, initial attempts to perform "combinatorial biosynthesis" failed due to challenges associated with maintaining the structural and catalytic integrity of large, chimeric synthases. Fast forward nearly 30 years, and advancements in our understanding of polyketide synthase structure and function have allowed the field to make significant progress toward effecting desired modifications to polyketide scaffolds in addition to engineering small, chiral fragments. This review highlights selected examples of polyketide diversification via control of monomer selection, oxidation state, stereochemistry, and cyclization. We conclude with a perspective on the present and future of polyketide structure diversification and hope that the examples presented here will encourage medicinal chemists to embrace polyketide synthetic biology as a means to revitalize polyketide drug discovery.

20.
J Braz Chem Soc ; 30(3): 499-508, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33859447

RESUMO

Genome mining provides exciting opportunities for the discovery of natural products. However, in contrast to traditional bioassay-guided approaches, challenges of genome mining include poor or no expression of biosynthetic gene clusters (BGCs). Additionally, given that thousands of BGCs are now available through extensive genome sequencing, how does one select BGCs for discovery? Synthetic biology techniques can be used for BGC refactoring and activation, whereas resistance-gene-directed genome mining is a promising approach to discover bioactive natural products. Here we report the selection of a BGC by applying a resistance-gene-directed approach, cloning of the silent BGC from Micromonospora sp. B006, promoter exchange, and heterologous expression in Streptomyces coelicolor M1152. While we have yet to identify the encoded compound, we unexpectedly observed induction of a host metabolite, which we hypothesize is due to the presence of a ClpC chaperone gene in the BGC, suggesting that ClpC chaperones may be used for BGC activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...